Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 138, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735991

RESUMEN

BACKGROUND: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS: In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS: At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS: The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.


Asunto(s)
Autoanticuerpos , Neuronas Dopaminérgicas , Enfermedad de Parkinson , Receptor de Angiotensina Tipo 1 , Animales , Autoanticuerpos/inmunología , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 1/inmunología , Ratas , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/patología , Modelos Animales de Enfermedad , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Masculino , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Tetrazoles/farmacología , Tetrazoles/uso terapéutico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Oxidopamina/farmacología , Humanos , Ratas Sprague-Dawley
2.
Transl Neurodegener ; 13(1): 22, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622720

RESUMEN

The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.


Asunto(s)
Enfermedad de Parkinson , Sistema Renina-Angiotensina , Animales , Humanos , Antagonistas de Receptores de Angiotensina/farmacología , Angiotensinas/metabolismo , Presión Sanguínea , Encéfalo/metabolismo , Dopamina , Enfermedad de Parkinson/patología , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/fisiología
3.
Neuropathol Appl Neurobiol ; 50(1): e12962, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343067

RESUMEN

AIMS: According to Braak's hypothesis, it is plausible that Parkinson's disease (PD) originates in the enteric nervous system (ENS) and spreads to the brain through the vagus nerve. In this work, we studied whether inflammatory bowel diseases (IBDs) in humans can progress with the emergence of pathogenic α-synuclein (α-syn) in the gastrointestinal tract and midbrain dopaminergic neurons. METHODS: We have analysed the gut and the ventral midbrain from subjects previously diagnosed with IBD and form a DSS-based rat model of gut inflammation in terms of α-syn pathology. RESULTS: Our data support the existence of pathogenic α-syn in both the gut and the brain, thus reinforcing the potential role of the ENS as a contributing factor in PD aetiology. Additionally, we have analysed the effect of a DSS-based rat model of gut inflammation to demonstrate (i) the appearance of P-α-syn inclusions in both Auerbach's and Meissner's plexuses (gut), (ii) an increase in α-syn expression in the ventral mesencephalon (brain) and (iii) the degeneration of nigral dopaminergic neurons, which all are considered classical hallmarks in PD. CONCLUSION: These results strongly support the plausibility of Braak's hypothesis and emphasise the significance of peripheral inflammation and the gut-brain axis in initiating α-syn aggregation and transport to the substantia nigra, resulting in neurodegeneration.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Enfermedad de Parkinson , Humanos , Ratas , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Encéfalo/patología , Inflamación/patología , Neuronas Dopaminérgicas/metabolismo , Enfermedades Inflamatorias del Intestino/patología
4.
NPJ Parkinsons Dis ; 10(1): 37, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368444

RESUMEN

The brain renin-angiotensin system (RAS) has been related to dopaminergic degeneration, and high expression of the angiotensin II (AngII) type 1 receptor (AT1) gene is a marker of the most vulnerable neurons in humans. However, it is unknown whether AngII/AT1 overactivation affects α-synuclein aggregation and transmission. In vitro, AngII/AT1 activation increased α-synuclein aggregation in dopaminergic neurons and microglial cells, which was related to AngII-induced NADPH-oxidase activation and intracellular calcium raising. In mice, AngII/AT1 activation was involved in MPTP-induced increase in α-synuclein expression and aggregation, as they significantly decreased in mice treated with the AT1 blocker telmisartan and AT1 knockout mice. Cell co-cultures (transwells) revealed strong transmission of α-synuclein from dopaminergic neurons to astrocytes and microglia. AngII induced a higher α-synuclein uptake by microglial cells and an increase in the transfer of α-synuclein among astroglial cells. However, AngII did not increase the release of α-synuclein by neurons. The results further support brain RAS dysregulation as a major mechanism for the progression of Parkinson's disease, and AT1 inhibition and RAS modulation as therapeutic targets.

5.
Antioxidants (Basel) ; 12(12)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38136165

RESUMEN

Several studies showed an association between metabolic syndrome (MetS) and Parkinson's disease (PD). The linking mechanisms remain unclear. MetS promotes low-grade peripheral oxidative stress and inflammation and dysregulation of the adipose renin-angiotensin system (RAS). Interestingly, brain RAS dysregulation is involved in the progression of dopaminergic degeneration and PD. Circulating extracellular vesicles (EVs) from MetS fat tissue can cross the brain-blood barrier and may act as linking signals. We isolated and characterized EVs from MetS and control rats and analyzed their mRNA and protein cargo using RT-PCR and the ExoView R200 platform, respectively. Furthermore, cultures of the N27 dopaminergic cell line and the C6 astrocytic cell line were treated with EVs from MetS rats. EVs were highly increased in MetS rat serum, which was inhibited by treatment of the rats with the angiotensin type-1-receptor blocker candesartan. Furthermore, EVs from MetS rats showed increased pro-oxidative/pro-inflammatory and decreased anti-oxidative/anti-inflammatory RAS components, which were inhibited in candesartan-treated MetS rats. In cultures, EVs from MetS rats increased N27 cell death and modulated C6 cell function, upregulating markers of neuroinflammation and oxidative stress, which were inhibited by the pre-treatment of cultures with candesartan. The results from rat models suggest EVs and their RAS cargo as a mechanism linking Mets and PD.

6.
Neurobiol Dis ; 188: 106341, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37918757

RESUMEN

The antagonistic effect of adenosine on dopaminergic transmission in the basal ganglia indirect motor control pathway is mediated by dopamine D2 (D2R) and adenosine A2A (A2AR) receptors co-expressed on medium spiny striatal neurons. The pathway is unbalanced in Parkinson's disease (PD) and an A2AR blocker has been approved for use with levodopa in the therapy of the disease. However, it is not known whether the therapy is acting on individually expressed receptors or in receptors forming A2A-D2 receptor heteromers, whose functionality is unique. For two proteins prone to interact, a very recently developed technique, MolBoolean, allows to determine the number of proteins that are either non-interacting or interacting. After checking the feasibility of the technique and reliability of data in transfected cells and in striatal primary neurons, the Boolean analysis of receptors in the striatum of rats and monkeys showed a high percentage of D2 receptors interacting with the adenosine receptor, while, on the contrary, a significant proportion of A2A receptors do not interact with dopamine receptors. The number of interacting receptors increased when rats and monkeys were lesioned to become a PD model. The use of a tracer of the indirect pathway in monkeys confirmed that the data was restricted to the population of striatal neurons projecting to the GPe. The results are not only relevant for being the first study quantifying individual versus interacting G protein-coupled receptors, but also for showing that the D2R in these specific neurons, in both control and PD animals, is under the control of the A2AR. The tight adenosine/dopamine receptor coupling suggest benefits of early antiparkinsonian treatment with adenosine receptor blockers.


Asunto(s)
Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Dopamina/metabolismo , Neuronas Espinosas Medianas , Adenosina/metabolismo , Reproducibilidad de los Resultados , Cuerpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Primates/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D1/metabolismo
7.
Brain ; 146(12): 5000-5014, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769648

RESUMEN

Although neuromelanin is a dark pigment characteristic of dopaminergic neurons in the human substantia nigra pars compacta, its potential role in the pathogenesis of Parkinson's disease (PD) has often been neglected since most commonly used laboratory animals lack neuromelanin. Here we took advantage of adeno-associated viral vectors encoding the human tyrosinase gene for triggering a time-dependent neuromelanin accumulation within substantia nigra pars compacta dopaminergic neurons in macaques up to similar levels of pigmentation as observed in elderly humans. Furthermore, neuromelanin accumulation induced an endogenous synucleinopathy mimicking intracellular inclusions typically observed in PD together with a progressive degeneration of neuromelanin-expressing dopaminergic neurons. Moreover, Lewy body-like intracellular inclusions were observed in cortical areas of the frontal lobe receiving dopaminergic innervation, supporting a circuit-specific anterograde spread of endogenous synucleinopathy by permissive trans-synaptic templating. In summary, the conducted strategy resulted in the development and characterization of a new macaque model of PD matching the known neuropathology of this disorder with unprecedented accuracy. Most importantly, evidence is provided showing that intracellular aggregation of endogenous α-synuclein is triggered by neuromelanin accumulation, therefore any therapeutic approach intended to decrease neuromelanin levels may provide appealing choices for the successful implementation of novel PD therapeutics.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Anciano , Sinucleinopatías/patología , Sustancia Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Primates/metabolismo
8.
Exp Neurol ; 362: 114319, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36632949

RESUMEN

It is of particular interest the potential of cannabinoid and angiotensin receptors as targets in the therapy of Parkinson's disease (PD). While endocannabinoids are neuromodulators that act through the CB1 and CB2 cannabinoid receptors, the renin angiotensin-system is relevant for regulation of the correct functioning of several brain circuits. Resonance energy transfer assays in a heterologous system showed that the CB1 receptor (CB1R) can directly interact with the angiotensin AT2 receptor (AT2R). Coactivation of the two receptors results in increased Gi-signaling. The AT2-CB1 receptor heteromer imprint consists of a blockade of AT2R-mediated signaling by rimonabant, a CB1R antagonist. Interestingly, the heteromer imprint, discovered in the heterologous system, was also found in primary striatal neurons thus demonstrating the expression of the heteromer in these cells. In situ proximity ligation assays confirmed the occurrence of AT2-CB1 receptor heteromers in striatal neurons. In addition, increased expression of the AT2-CB1 receptor heteromeric complexes was detected in the striatum of a rodent PD model consisting of rats hemilesioned using 6-hydroxydopamine. Expression of the heteromer was upregulated in the striatum of lesioned animals and, also, of lesioned animals that upon levodopa treatment became dyskinetic. In contrast, there was no upregulation in the striatum of lesioned rats that did not become dyskinetic upon chronic levodopa treatment. The results suggest that therapeutic developments focused on the CB1R should consider that this receptor can interact with the AT2R, which in the CNS is involved in mechanisms related to addictive behaviors and to neurodegenerative and neuroinflammatory diseases.


Asunto(s)
Cannabinoides , Enfermedad de Parkinson , Ratas , Animales , Receptores de Cannabinoides/metabolismo , Levodopa , Oxidopamina , Cuerpo Estriado/metabolismo , Enfermedad de Parkinson/metabolismo , Receptores de Angiotensina , Angiotensinas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
9.
Brain Behav Immun ; 108: 255-268, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535607

RESUMEN

The metabolic syndrome has been associated to chronic peripheral inflammation and related with neuroinflammation and neurodegeneration, including Parkinson's disease. However, the responsible mechanisms are unclear. Previous studies have involved the brain renin-angiotensin system in progression of Parkinson's disease and the angiotensin receptor type 1 (AT1) has been recently revealed as a major marker of dopaminergic vulnerability in humans. Dysregulation of tissue renin-angiotensin system is a key common mechanism for all major components of metabolic syndrome. Circulating AT1 agonistic autoantibodies have been observed in several inflammation-related peripheral processes, and activation of AT1 receptors of endothelial cells, dopaminergic neurons and glial cells have been observed to disrupt endothelial blood -brain barrier and induce neurodegeneration, respectively. Using a rat model, we observed that metabolic syndrome induces overactivity of nigral pro-inflammatory renin-angiotensin system axis, leading to increase in oxidative stress and neuroinflammation and enhancing dopaminergic neurodegeneration, which was inhibited by treatment with AT1 receptor blockers (ARBs). In rats, metabolic syndrome induced the increase in circulating levels of LIGHT and other major pro-inflammatory cytokines, and 27-hydroxycholesterol. Furthermore, the rats showed a significant increase in serum levels of proinflammatory AT1 and angiotensin converting enzyme 2 (ACE2) autoantibodies, which correlated with levels of several metabolic syndrome parameters. We also found AT1 and ACE2 autoantibodies in the CSF of these rats. Effects of circulating autoantibodies were confirmed by chronic infusion of AT1 autoantibodies, which induced blood-brain barrier disruption, an increase in the pro-inflammatory renin-angiotensin system activity in the substantia nigra and a significant enhancement in dopaminergic neuron death in two different rat models of Parkinson's disease. Observations in the rat models, were analyzed in a cohort of parkinsonian and non-parkinsonian patients with or without metabolic syndrome. Non-parkinsonian patients with metabolic syndrome showed significantly higher levels of AT1 autoantibodies than non-parkinsonian patients without metabolic syndrome. However, there was no significant difference between parkinsonian patients with metabolic syndrome or without metabolic syndrome, which showed higher levels of AT1 autoantibodies than non-parkinsonian controls. This is consistent with our recent studies, showing significant increase of AT1 and ACE2 autoantibodies in parkinsonian patients, which was related to dopaminergic degeneration and neuroinflammation. Altogether may lead to a vicious circle enhancing the progression of the disease that may be inhibited by strategies against production of these autoantibodies or AT1 receptor blockers (ARBs).


Asunto(s)
Síndrome Metabólico , Enfermedad de Parkinson , Animales , Humanos , Ratas , Angiotensina II/metabolismo , Angiotensina II/farmacología , Antagonistas de Receptores de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Autoanticuerpos/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Síndrome Metabólico/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo
10.
Glia ; 70(12): 2348-2360, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35943203

RESUMEN

There are sex differences in microglia, which can maintain sex-related gene expression and functional differences in the absence of circulating sex steroids. The angiotensin type 2 (AT2) receptors mediate anti-inflammatory actions in different tissues, including brain. In mice, we performed RT-PCR analysis of microglia isolated from adult brains and RNA scope in situ hybridization from males, females, ovariectomized females, orchiectomized males and brain masculinized females. We also compared wild type and AT2 knockout mice. The expression of AT2 receptors in microglial cells showed sex differences with much higher AT2 mRNA expression in females than in males, and this was not dependent on circulating gonadal hormones, as observed using ovariectomized females, brain masculinized females and orchiectomized males. These results suggest genomic reasons, possibly related to sex chromosome complement, for sex differences in AT2 expression in microglia, as the AT2 receptor gene is located in the X chromosome. Furthermore, sex differences in expression of AT2 receptors were associated to sex differences in microglial expression of key anti-inflammatory cytokines such as interleukin-10 and pro-inflammatory cytokines such as interleukin-1ß and interleukin-6. In conclusion, sex differences in microglial AT2 receptor expression appear as a major factor contributing to sex differences in the neuroinflammatory responses beyond the effects of circulating steroids.


Asunto(s)
Microglía , Receptor de Angiotensina Tipo 2 , Angiotensinas/metabolismo , Angiotensinas/farmacología , Animales , Antiinflamatorios/farmacología , Citocinas/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Microglía/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , Receptor de Angiotensina Tipo 2/genética , Receptor de Angiotensina Tipo 2/metabolismo
11.
NPJ Parkinsons Dis ; 8(1): 76, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701430

RESUMEN

The role of autoimmunity in neurodegeneration has been increasingly suggested. The renin-angiotensin system (RAS) autoantibodies play a major role in several peripheral inflammatory processes. Dysregulation of brain RAS has been involved in neuroinflammation and neurodegeneration. We aimed to know whether angiotensin type-1 receptor (AT1) autoantibodies (AT1 agonists) and angiotensin-converting enzyme 2 (ACE2) autoantibodies (ACE2 antagonists) may be involved in Parkinson's disease (PD) progression and constitute a new therapeutical target. Both AT1 and ACE2 serum autoantibodies were higher in a group of 117 PD patients than in a group of 106 controls. Serum AT1 autoantibodies correlated with several cytokines, particularly Tumor Necrosis Factor Ligand Superfamily Member 14 (TNFSF14, LIGHT), and 27-hydroxycholesterol levels. Serum ACE2 autoantibodies correlated with AT1 autoantibodies. Both autoantibodies were found in cerebrospinal fluid (CSF) of four PD patients with CSF samples. Consistent with the observations in patients, experimental dopaminergic degeneration, induced by 6-hydroxydopamine, increased levels of autoantibodies in serum and CSF in rats, as well as LIGHT levels and transglutaminase activity in rat substantia nigra. In cultures, administration of AT1 autoantibodies enhanced dopaminergic neuron degeneration and increased levels of neuroinflammation markers, which was inhibited by the AT1 antagonist candesartan. The results suggest dysregulation of RAS autoantibodies as a new mechanism that can contribute to PD progression. Therapeutical strategies blocking the production, or the effects of these autoantibodies may be useful for PD treatment, and the results further support repurposing AT1 blockers (ARBs) as treatment against PD progression.

12.
Front Med (Lausanne) ; 9: 840662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35355599

RESUMEN

Objective: We previously showed that angiotensin type-1 receptor and ACE2 autoantibodies (AT1-AA, ACE2-AA) are associated with COVID-19 severity. Our aim is to find correlations of these autoantibodies with routine biochemical parameters that allow an initial classification of patients. Methods: In an initial cohort of 119 COVID-19 patients, serum AT1-AA and ACE2-AA concentrations were obtained within 24 h after diagnosis. In 50 patients with a complete set of routine biochemical parameters, clinical data and disease outcome information, a Random Forest algorithm was used to select prognostic indicators, and the Spearman coefficient was used to analyze correlations with AT1-AA, ACE2-AA. Results: Hemoglobin, lactate dehydrogenase and procalcitonin were selected. A decrease in one unit of hemoglobin, an increase in 0.25 units of procalcitonin, or an increase in 100 units of lactate dehydrogenase increased the severity of the disease by 35.27, 69.25, and 3.2%, respectively. Our binary logistic regression model had a predictive capability to differentiate between mild and moderate/severe disease of 84%, and between mild/moderate and severe disease of 76%. Furthermore, the selected parameters showed strong correlations with AT1-AA or ACE2-AA, particularly in men. Conclusion: Hemoglobin, lactate dehydrogenase and procalcitonin can be used for initial classification of COVID-19 patients in the admission day. Subsequent determination of more complex or late arrival biomarkers may provide further data on severity, mechanisms, and therapeutic options.

13.
Biomedicines ; 10(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35203711

RESUMEN

A massive worldwide vaccination campaign constitutes the main tool against the COVID-19 pandemic. However, drug treatments are also necessary. Antivirals are the most frequently considered treatments. However, strategies targeting mechanisms involved in disease aggravation may also be effective. A major role of the tissue renin-angiotensin system (RAS) in the pathophysiology and severity of COVID-19 has been suggested. The main link between RAS and COVID-19 is angiotensin-converting enzyme 2 (ACE2), a central RAS component and the primary binding site for SARS-CoV-2 that facilitates the virus entry into host cells. An initial suggestion that the susceptibility to infection and disease severity may be enhanced by angiotensin type-1 receptor blockers (ARBs) and ACE inhibitors (ACEIs) because they increase ACE2 levels, led to the consideration of discontinuing treatments in thousands of patients. More recent experimental and clinical data indicate that ACEIs and, particularly, ARBs can be beneficial for COVID-19 outcome, both by reducing inflammatory responses and by triggering mechanisms (such as ADAM17 inhibition) counteracting viral entry. Strategies directly activating RAS anti-inflammatory components such as soluble ACE2, Angiotensin 1-7 analogues, and Mas or AT2 receptor agonists may also be beneficial. However, while ACEIs and ARBs are cheap and widely used, the second type of strategies are currently under study.

14.
Antioxidants (Basel) ; 11(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35204211

RESUMEN

The tissue renin-angiotensin system (RAS) has been shown to be involved in prooxidative and proinflammatory changes observed in aging and aging-related diseases such as dopaminergic degeneration in Parkinson's disease (PD). We studied the activation of the NLRP3 inflammasome in the substantia nigra with aging and early stages of dopaminergic degeneration in PD models and, particularly, if the brain RAS, via its prooxidative proinflammatory angiotensin II (AngII) type 1 (AT1) receptors, mediates the inflammasome activation. Nigras from aged rats and mice and 6-hydroxydopamine PD models showed upregulation in transcription of inflammasome-related components (NLRP3, pro-IL1ß and pro-IL18) and IL1ß and IL18 protein levels, which was inhibited by the AT1 receptor antagonist candesartan. The role of the AngII/AT1 axis in inflammasome activation was further confirmed in rats intraventricularly injected with AngII, and in primary mesencephalic cultures treated with 6-hydroxydopamine, which showed inflammasome activation that was blocked by candesartan. Observations in the nigra of young and aged AT1 and AT2 knockout mice confirmed the major role of AT1 receptors in nigral inflammasome activation. In conclusion, the inflammasome is upregulated by aging and dopaminergic degeneration in the substantia nigra, possibly related with a decrease in dopamine levels, and it is mediated by the AngII/AT1 axis.

15.
Neural Regen Res ; 17(8): 1652-1658, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35017411

RESUMEN

In the last decade, attention has become greater to the relationship between neurodegeneration and abnormal insulin signaling in the central nervous system, as insulin in the brain is implicated in neuronal survival, plasticity, oxidative stress and neuroinflammation. Diabetes mellitus and Parkinson's disease are both aging-associated diseases that are turning into epidemics worldwide. Diabetes mellitus and insulin resistance not only increase the possibility of developing Parkinson's disease but can also determine the prognosis and progression of Parkinsonian symptoms. Today, there are no available curative or disease modifying treatments for Parkinson's disease, but the role of insulin and antidiabetic medications in neurodegeneration opens a door to treatment repurposing to fight against Parkinson's disease, both in diabetic and nondiabetic Parkinsonian patients. Furthermore, it is essential to comprehend how a frequent and treatable disease such as diabetes can influence the progression of neurodegeneration in a challenging disease such as Parkinson's disease. Here, we review the present evidence on the connection between Parkinson's disease and diabetes and the consequential implications of the existing antidiabetic molecules in the severity and development of Parkinsonism, with a particular focus on glucagon-like peptide-1 receptor agonists.

16.
Antioxidants (Basel) ; 10(11)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34829520

RESUMEN

Reactive oxygen species (ROS) are signalling molecules used to regulate cellular metabolism and homeostasis. However, excessive ROS production causes oxidative stress, one of the main mechanisms associated with the origin and progression of neurodegenerative disorders such as Parkinson's disease. NRF2 (Nuclear Factor-Erythroid 2 Like 2) is a transcription factor that orchestrates the cellular response to oxidative stress. The regulation of NRF2 signalling has been shown to be a promising strategy to modulate the progression of the neurodegeneration associated to Parkinson's disease. The NRF2 pathway has been shown to be affected in patients with this disease, and activation of NRF2 has neuroprotective effects in preclinical models, demonstrating the therapeutic potential of this pathway. In this review, we highlight recent advances regarding the regulation of NRF2, including the effect of Angiotensin II as an endogenous signalling molecule able to regulate ROS production and oxidative stress in dopaminergic neurons. The genes regulated and the downstream effects of activation, with special focus on Kruppel Like Factor 9 (KLF9) transcription factor, provide clues about the mechanisms involved in the neurodegenerative process as well as future therapeutic approaches.

17.
Redox Biol ; 46: 102078, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34333284

RESUMEN

ACE2 plays a pivotal role in the balance between the pro-oxidative pro-inflammatory and the anti-oxidative anti-inflammatory arms of the renin-angiotensin system. Furthermore, ACE2 is the entry receptor for SARS-CoV-2. Clarification of ACE2-related mechanisms is crucial for the understanding of COVID-19 and other oxidative stress and inflammation-related processes. In rat and monkey brain, we discovered that the intracellular ACE2 and its products Ang 1-7 and alamandine are highly concentrated in the mitochondria and bind to a new mitochondrial Mas-related receptor MrgE (MrgE) to produce nitric oxide. We found MrgE expressed in neurons and glia of rodents and primates in the substantia nigra and different brain regions. In the mitochondria, ACE2 and MrgE expressions decreased and NOX4 increased with aging. This new ACE2/MrgE/NO axis may play a major role in mitochondrial regulation of oxidative stress in neurons, and possibly other cells. Therefore, dysregulation of the mitochondrial ACE2/MrgE/NO axis may play a major role in neurodegenerative processes of dopaminergic neurons, where mitochondrial dysfunction and oxidative stress play a crucial role. Since ACE2 binds SARS-CoV-2 spike protein, the mitochondrial ACE2/MrgE/NO axis may also play a role in SARS-CoV-2 cellular effects.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mitocondrias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , COVID-19 , Humanos , Primates , Ratas , Roedores , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
18.
Int J Mol Sci ; 22(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062940

RESUMEN

Mutations in the GBA1 gene coding for glucocerebrosidase (GCase) are the main genetic risk factor for Parkinson's disease (PD). Indeed, identifying reduced GCase activity as a common feature underlying the typical neuropathological signatures of PD-even when considering idiopathic forms of PD-has recently paved the way for designing novel strategies focused on enhancing GCase activity to reduce alpha-synuclein burden and preventing dopaminergic cell death. Here we have performed bilateral injections of a viral vector coding for the mutated form of alpha-synuclein (rAAV9-SynA53T) for disease modeling purposes, both in mice as well as in nonhuman primates (NHPs), further inducing a progressive neuronal death in the substantia nigra pars compacta (SNpc). Next, another vector coding for the GBA1 gene (rAAV9-GBA1) was unilaterally delivered in the SNpc of mice and NHPs one month after the initial insult, together with the contralateral delivery of an empty/null rAAV9 for control purposes. Obtained results showed that GCase enhancement reduced alpha-synuclein burden, leading to improved survival of dopaminergic neurons. Data reported here support using GCase gene therapy as a disease-modifying treatment for PD and related synucleinopathies, including idiopathic forms of these disorders.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Terapia Genética , Glucosilceramidasa/genética , Enfermedad de Parkinson/terapia , alfa-Sinucleína/genética , Animales , Dopamina/genética , Neuronas Dopaminérgicas/patología , Vectores Genéticos/uso terapéutico , Humanos , Macaca/genética , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Mutación/genética , Neuroprotección/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología
19.
J Autoimmun ; 122: 102683, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34144328

RESUMEN

The renin-angiotensin system (RAS) plays a major role in COVID-19. Severity of several inflammation-related diseases has been associated with autoantibodies against RAS, particularly agonistic autoantibodies for angiotensin type-1 receptors (AA-AT1) and autoantibodies against ACE2 (AA-ACE2). Disease severity of COVID-19 patients was defined as mild, moderate or severe following the WHO Clinical Progression Scale and determined at medical discharge. Serum AA-AT1 and AA-ACE2 were measured in COVID-19 patients (n = 119) and non-infected controls (n = 23) using specific solid-phase, sandwich enzyme-linked immunosorbent assays. Serum LIGHT (TNFSF14; tumor necrosis factor ligand superfamily member 14) levels were measured with the corresponding assay kit. At diagnosis, AA-AT1 and AA-ACE2 levels were significantly higher in the COVID-19 group relative to controls, and we observed significant association between disease outcome and serum AA-AT1 and AA-ACE2 levels. Mild disease patients had significantly lower levels of AA-AT1 (p < 0.01) and AA-ACE2 (p < 0.001) than moderate and severe patients. No significant differences were detected between males and females. The increase in autoantibodies was not related to comorbidities potentially affecting COVID-19 severity. There was significant positive correlation between serum levels of AA-AT1 and LIGHT (TNFSF14; rPearson = 0.70, p < 0.001). Both AA-AT1 (by agonistic stimulation of AT1 receptors) and AA-ACE2 (by reducing conversion of Angiotensin II into Angiotensin 1-7) may lead to increase in AT1 receptor activity, enhance proinflammatory responses and severity of COVID-19 outcome. Patients with high levels of autoantibodies require more cautious control after diagnosis. Additionally, the results encourage further studies on the possible protective treatment with AT1 receptor blockers in COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Autoanticuerpos/sangre , Autoantígenos/inmunología , COVID-19/inmunología , Receptor de Angiotensina Tipo 1/inmunología , Anciano , Autoanticuerpos/inmunología , COVID-19/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistema Renina-Angiotensina/inmunología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...